Thursday, April 18, 2019

Body composition - Chemistry in our everyday life

Body Composition

Your body is a fascinating place. Carbon and oxygen are the two most essential elements of the body. The other elements which are present in your body are nitrogen, phosphorous, hydrogen, oxygen, calcium, potassium, sulfur, magnesium, etc.

Wednesday, April 10, 2019

Light - Relation between speed and source

The speed of light doesn't change when you boost your light source. Imagine throwing a ball as fast as you can. Depending on what sport you're playing, you might get all the way up to 100 miles per hour (~45 meters/second) using your hand-and-arm alone. Now, imagine you're on a train (or in a plane) moving incredibly quickly: 300 miles per hour (~134 m/s). If you throw the ball from the train, moving in the same direction, how fast does the ball move? You simply add the speeds up: 400 miles per hour, and that's your answer. Now, imagine that instead of throwing a ball, you emit a beam of light instead. Add the speed of the light to the speed of the train... and you get an answer that's completely wrong.
Really, you do! This was the central idea of Einstein's theory of special relativity, but it wasn't Einstein who made this experimental discovery; it was Albert Michelson, who's pioneering work in the 1880s demonstrated that this was the case. Whether you fired a beam of light in the same direction that Earth moved, perpendicular to that direction, or antiparallel to that direction made no difference. Light always moved at the same speed: c, the speed of light in vacuum. Michelson developed his interferometer to measure the motion of the Earth through the aether, and instead paved the way for relativity. His 1907 Nobel prize remains the world's most famous null result, and the most important one in scientific history.

Tuesday, April 2, 2019

Plum pudding model of an atom

99.9% of an atom's mass is concentrated in an incredibly dense nucleus. Have you ever heard of the 'plum pudding' model of the atom? It sounds quaint today, but it was generally accepted at the start of the 20th century that atoms were made of a mix of negatively charged electrons (behaving like plums) embedded in a positively-charged medium (which behaved like pudding) that filled all of space. Electrons could be stripped off or stolen, explaining the phenomenon of static electricity. For years, J.J. Thomson's model of a composite atom, with small electrons in a positively charged substrate, was generally accepted. Until, that is, it was put to the test by Ernest Rutherford.
By firing high-energy, charged particles (from radioactive decays) at a very thin sheet of gold foil, Rutherford fully expected that all the particles would pass through. And most of them did, but a few spectacularly bounced back! As Rutherford recounted:
It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you.
What Rutherford discovered was the atomic nucleus, containing virtually all the mass of an atom, confined to a volume one-quadrillionth (10-15) the size of the entire thing. It was the birth of modern physics, and it paved the way for the quantum revolution of the 20th century.

Saturday, March 23, 2019

Cosmic microwave background -Origin of universe

The Universe began with a bang, but that discovery was a complete accident. In the 1940s, George Gamow and his collaborators put forth a radical idea: that the Universe that was expanding and cooling today was not only hotter and denser in the past, but arbitrarily so. If you extrapolated back far enough, you'd have a Universe hot enough to ionize all the matter in it, while even farther back you'd break apart atomic nuclei. The idea became known as the Big Bang, with two major predictions arising:
  1. The Universe we began with wouldn't have only matter made of mere protons and electrons, but would consist of a mix of the light elements, fused together in the high-energy, early Universe.
  2. When the Universe cooled enough to form neutral atoms, that high-energy radiation would be released, and would travel in a straight line for all eternity until it collided with something, red shifting and losing energy as the Universe expanded.
This "cosmic microwave background" was predicted to be just a few degrees above absolute zero.
In 1964, Arno Penzias and Bob Wilson accidentally discovered the Big Bang's leftover glow. Working with a radio antenna at Bell Labs to study radar, they found uniform noise everywhere they looked on the sky. It wasn't the Sun, or the galaxy, or Earth's atmosphere... but they didn't know what it was. So they cleaned out the inside of the antenna with mops, removing pigeons in the process, but still the noise persisted. It was only when the results were shown to a physicist familiar with the Princeton group's (Dicke, Peebles, Wilkinson, etc.) detailed predictions, and with the radiometer they were building to detect exactly this type of signal, that they recognized the significance of what they found. For the first time, the origin of our Universe was known.

Wednesday, March 13, 2019

Minuscle - the nearly-invisible particle

'Missing energy' leads to the discovery of a minuscule, nearly-invisible particle. In all the interactions we've ever seen between particles, energy is always conserved. It can be transformed from one type into another — potential, kinetic, rest mass, chemical, atomic, electrical, etc. — but it can never be created nor destroyed. Which is why it was so puzzling, nearly a century ago, when it was found that some radioactive decays have slightly less total energy in their products than in the initial reactants. It led Bohr to postulate that energy was always conserved... except for when it was lost. But Bohr was mistaken, and it was Pauli who had other ideas.

Pauli contended that energy must be conserved, and so way back in 1930, he proposed a new particle: the neutrino. This "little neutral one" would not interact electromagnetically, but would instead have a minuscule mass and carry kinetic energy away. While many were skeptical, experiments from the products of nuclear reactions eventually detected both neutrinos and antineutrinos in the 1950s and 1960s, which helped lead physicists to both the Standard Model and the model of the weak nuclear interactions. It's a stunning example of how theoretical predictions can sometimes lead to a spectacular advance, once the proper experimental techniques are developed.

Monday, March 4, 2019

High energy particles - the science behind

All the particles we interact with have high-energy, unstable cousins. It's often said that advances in science aren't met with "eureka!" but rather with "that's funny," but this actually happened in fundamental physics! If you charge up an electroscope — where two conducting metal leaves are connected to another conductor — both leaves will gain the same electric charge, and repel one another as a result. If you place that electroscope in a vacuum, the leaves shouldn't discharge, but over time, they do. The best idea we had for this discharge was that there were high-energy particles hitting Earth from outer space, cosmic rays, and the products of these collisions were discharging the electroscope.

In 1912, Victor Hess conducted balloon-borne experiments to search for these high-energy cosmic particles, discovering them immediately in great abundance and becoming the father of cosmic rays. By constructing a detection chamber with a magnetic field in them, you could measure both the velocity and charge-to-mass ratio based on how the particle’s track curves. Protons, electrons, and even the first particles of antimatter were detected via this method, but the biggest surprise came in 1933, when Paul Kunze, working with cosmic rays, discovered a track from a particle that was just like the electron... except hundreds of times heavier!
The muon, with a lifetime of just 2.2 microseconds, was later experimentally confirmed and detected by Carl Anderson and his student, Seth Neddermeyer, using a cloud chamber on the ground. When the physicist I.I. Rabi, himself a Nobel Laureate for the discovery of nuclear magnetic resonance, learned of the muon's existence, he famously quipped, "Who ordered that?" It was later discovered that both composite particles (like the proton and neutron) and fundamental ones (quarks, electrons, and neutrinos) all have multiple generations of heavier relatives, with the muon being the first "generation 2" particle ever discovered.

Friday, February 15, 2019

EPC3- Ex 9: Video Conferencing

Video conferencing is a visual communication session between two or more users regardless of their location, featuring audio and video content transmission in real time.

Video Conferencing Benefits
  Save your time. You can run video conferences with remote colleagues on the run right from your desktop or meeting room. With video meeting you don’t waste your time and money on business vacations, cut event management costs, etc.
  Easy-to-use. You just need to schedule your video meeting, invite your colleagues and start video conference right away! Your video conferencing system will also send you a notification to remind you of your meeting. Additionally, video conferencing system interface is extremely user-friendly and does not need additional trainings.
  Collaboration tools. For efficient workflow video conferencing systems often provide different collaboration tools, such as screen and content sharing, slideshow, instant messaging. Collaboration tools allow multiple teams to work on a joint project, share their results and brainstorm ideas.
  Real-life impressions. As compared to phone talks, video conferencing is much closer to real life as it features visual contact. During a video meeting you can see user’s emotions and articulation and establish eye contact, which is crucial for social communication. Additionally, video conferencing systems do not allow users to distract, making it easier to focus on the communications as during a real meeting.
  Security. Modern video conferencing systems are based on specialized codecs, proprietary protocols and actively using encryption, which is why security risks can only be caused by a human factor.

Wednesday, January 23, 2019

EPC3- Ex 6: How to use projector

  1. 1
    Identifiy the video cable type. There are a variety of video cables that can connect a computer to a projector or display. Most projectors and displays support a variety of cable types. Here is a brief description of a few common cable types.
    • HDMI: HDMI cables have a flat, gold or silver head that is about 0.6 inches, or 1 centimeter across. They are quickly becoming the standard for connecting devices to TVs and projectors.
    • DVI: DVI cables have a white head with 24 large holes, and 4 small holes. These cables are most commonly used to connect computer monitors and projectors, and some laptops They're not as common on TVs and flat-screen displays.
    • VGA: VGA cables have a blue head with 15 holes in three rows of 5. These are another cable that is commonly used to connect computer monitors and projectors.
  2. 2
    Connect the cable to the connector port.After you identify the cable type, identify which connection port it connects too on the projector or display. The connector ports are generally on the back of the projector or flat screen display. Many video connection ports may be labeled. If they are not labeled, look at the shape of the head on the cable and plug it into a port that is the same shape and size. If the cable head has holes in it, look for metal pins in the connector port that correspond to the holes, and plug the cable into the connector port.
  3. 3
    Press the power 
     button on the computer and display.
     The power button is on the buttons panel or remote for the projector or display. The power button is often represented by a symbol that looks like a circle with a line through the top. If you haven't already done so, turn on your computer or laptop as well.
  4. 4
    Click the Apple menu 
     .
     The Apple Menu appears when you click the Apple icon in the upper-left corner of the display in the menu bar at the top of the screen.
  5. 5
    Click System Preferences. It's in the Apple Menu. This displays the System Preferences options window.
  6. 6
    Click Displays. It's the icon that resembles computer monitor in the Mac System Preferences window. This opens the "Displays" window.
  7. 7
    Check 
     next to "Mirror Screen".
     The checkbox is on the left side, below the white box in the middle. This tells the Mac to display the computer display on the projector or display.
  8. 8
    Click Detect Displays. It's in the lower-right corner of the display window. Your Mac will automatically detect the projector or display, and project onto it.

Wednesday, January 16, 2019

EPC3- Ex 5: How to use a interactive whiteboard

Creative Ways to Use Your Interactive Whiteboard
After years of interactive whiteboards being touted as the next best thing for engaging students, the unfortunate reality is that while they have become common in many schools, they are often used as glorified projector screens. Interaction may take place with the board, but more often than not it’s being directed by the teacher and students merely consume the interaction in a passive way.

It doesn’t have to be this way!

I use interactive whiteboards (IWB) in my classrooms regularly and conduct best-practice training sessions for my district’s staff. Based on my experiences, I’ve put together a few tips, techniques and tricks you can use to start making more effective use of your interactive whiteboard and get your students actively using it as a part of their daily educational experience

BEGINNER ACTIVITIES
Group note taking
Use the board as you would your plain old regular whiteboard, but with one difference. SAVE the notes! Most IWB vendors include software that serves as a blank canvas for creating presentations and taking notes. Encourage your students to come up and jot down a few discoveries they make during independent work time or notes that might help the rest of the class on a particular topic or project. Save the notes at the end of the class—you now have a digital record of the day’s learning! Print out the notes or publish them as a PDF to your website for later student consumption.
Online interactives
It’s tough to find time to learn all the bells and whistles of your IWB’s software, so tap into the thousands of online flash-based activities and interactives that are already available.

INTERMEDIATE ACTIVITIES
Check your vendor’s lesson sharing community
Most of the IWB vendors now have interactive resource and lesson sharing communities to help teachers find new ways to use their boards. Many of these lessons are already tied to teaching standards and often include many engaging activities, interactive assessments and tutorials for building your own interactive lessons. The sites listed below not only have great resources for your particular software and vendor, but they also have forums, blogs and other community features that allow you to connect with other educators using the same products as you.
Give students control via center time
Once you feel comfortable navigating the tools and the new learning opportunities your IWB has to offer, turn it over to your students. Pull up one of the lessons you’ve downloaded from your vendor’s lesson plan sharing community and let your students work in small groups with the IWB. Your IWB can be a math, science or language arts center instantly by adding it to the rotation of learning centers in your classroom. If you use an interactive lesson that you’ve already used in class, it can serve as a practice or reinforcement tool. Often students love to repeat interactive lessons when they’re the ones doing the “driving.”
ADVANCED ACTIVITIES
Student created interactives
It’s my experience that almost everyone loves games. Mix some gaming elements with study materials and you can begin to encourage students to create their own interactive learning resources. I’ve seen students create fully functioning interactive mazes, matching games and other games using our IWBs at school. By manipulating the learning material and exploring how to integrate it within a game or simulation, the students are exposed to the content in new ways over an extended period of time. Allow students to use your tools to see what they can create, but give them some guidelines. 
Capture lessons using screen recording tools
Being able to make a lesson more interactive through your IWB’s tools is a huge boon to engagement in your classroom, but being able to capture the learning experience to share with students is even better. Many of the IWB software tools include a screen recording tool, complete with audio capture via the computer’s microphone, but there are also tons of free screen recording tools available on the web. Snagit, Screencast-o-Matic or Quicktime X included with new Macs are all ways to capture what’s happening on your computer screen. Have students capture what they’re doing on their computers, or capture something on your own machine, and then embed the video into your flipchart, notebook or other IWB presentation software. Now you’ve got powerful firsthand full video learning experiences embedded directly into your lesson!

Article on Discrimination - C2